Sehening Kalbu

Kelana Berlandaskan Hati, Percaya Mengikat Diri…

Stem cell discovery ‘like turning lead into gold’

Posted by anakkawi on December 31, 2007

2007/12/29insidepix1

IT was the kind of breakthrough scientists had dreamed of for decades and its promise to help cure disease appears to be fast on the way to being realised.

Researchers last month announced they were able to turn the clock back on skin cells and transform them into stem cells, the mutable building blocks of organs and tissues.

Then earlier this month, a different team announced it had cured sickle cell anaemia in mice using stem cells derived from adult mouse skin.

“This is truly the Holy Grail: to be able to take a few cells from a patient — say a cheek swab or few skin cells — and turn them into stem cells in the laboratory,” said Robert Lanza, a stem cell pioneer at Advanced Cell Technology.
“This work represents a tremendous scientific milestone” he said. “It’s bit like learning how to turn lead into gold.”

Stem cells offer great potential for curing and treating disease because they can be transformed into any cell in the body and hopefully, be used to replace damaged or diseased cells, tissues and organs.

US President George W. Bush has banned all federal funding for research on human embryonic stem cells and access to stem cells in other countries has also been restricted because of the difficulty in finding women willing to donate their eggs. —

The new technique, while far from perfected, is so promising that the man who managed to clone the world’s first sheep, Dolly, is giving up his work cloning embryos to focus on studying stem cells derived from skin cells.

“The fact that (the) introduction of a small number of proteins into adult human cells could produce cells that are equivalent to embryo stem cells takes us into an entirely new era of stem cell biology,” said Ian Wilmut, the researcher who first created a viable clone by transferring a cell nucleus into a new embryo.

One of the greatest advantages of the new technique is its simplicity: it takes just four genes to turn the skin cell back into a stem cell.

This, unlike the complex and expensive process developed by Wilmut, can be done in a standard biological lab. And skin cells are much easier to harvest than embryos.

With stem cells derived from skin, tissues and organs can now be grown in a petri dish, making it easier to map the genetic structure of diseased cells, a process which could unlock a cure.

They could also allow researchers to do chemical screens to identify drugs which may cure or treat a disease, a process which could speed up the process of bringing life-saving drugs to the market.

The use of skin cells will eventually allow doctors to create stem cells with a specific patient’s genetic code, eliminating the risk that the body would reject transplanted tissues or organs.

Researchers have already shown this is possible when they cured sickle cell anaemia in mice.

They used skin cells taken from the tails of sick mice, transformed them into stem cells, manipulated those stem cells into healthy bone marrow cells and then transplanted them into the sick mice.

And since the new cells came from the sick mice, there was also no need for dangerous immunosuppressant drugs to prevent rejection.

But leading stem cell researchers warned that the skin cells might never be a substitute for embryonic stem cells. — AFP

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

 
%d bloggers like this: